Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Oral Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566601

RESUMO

OBJECTIVE: Tumour angiogenesis is affected by various cell types in the tumour microenvironment (TME), including cancer cells and cancer-associated fibroblasts (CAFs). Here, an assembled organoid model was generated to investigate the mechanism by which the TME regulates angiogenesis in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Secretion of vascular endothelial growth factor-A (VEGFA) was analysed to compare the proangiogenic properties of OSCC cells and corresponding CAFs. Cell aggregates consisting of endothelial cells (ECs), CAFs and cancer cells were generated to construct assembled organoids. Nicotinamide N-methyltransferase (NNMT) was pharmacologically or genetically inhibited to block the activation of CAFs. ATAC-seq was employed to test the transcriptional network of fibroblasts overexpressing NNMT. RESULTS: Compared with cancer cells, CAFs secreted more VEGFA. Coculture with CAFs more effectively promoted the sprouting of ECs. Blockade of CAF activation via inhibition of NNMT drastically reduced the expression of CD31 in the assembled organoids. Overexpression of NNMT enhanced the transcription of genes related to angiogenesis in fibroblasts. Specifically, NNMT orchestrated the enrichment of the transcription factor JUNB at the promoter of VEGFA. CONCLUSIONS: We clarify that stromal NNMT enables the steady reproduction of angiogenesis in assembled oral cancer organoids, providing a novel target for exploiting antiangiogenic therapy.

2.
Discov Oncol ; 15(1): 109, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589585

RESUMO

BACKGROUND: Odontogenic cysts/tumor can cause severe bone destruction, which affects maxillofacial function and aesthetics. Meanwhile, metabolic reprogramming is an important hallmark of diseases. Changes in metabolic flow affect all aspects of disease, especially bone-related diseases. At present, the researches on pathogenesis of odontogenic cysts/tumor are mainly focused on the level of gene regulation, but the effects of metabolic alterations on odontogenic cysts/tumor have still underexplored. MATERIALS AND METHODS: Imaging analysis was used to evaluate the lesion size of different odontogenic lesions. Tartrate resistant acid phosphatase (TRAP) and immunohistochemistry (IHC) assays were utilized to detect the differences in bone destruction activity in odontogenic cysts and tumors. Furthermore, metabolomics and weighted gene co-expression network analysis (WGCNA) were conducted for the metabolomic features and key metabolite screening, respectively. The effect of ferroptosis inhibition on bone destruction was confirmed by IHC, immunofluorescence, and malondialdehyde colorimetric assay. RESULTS: The bone destruction activity of ameloblastoma (AM) was the strongest and the weakest in odontogenic cysts (OC). High-throughput targeted metabolomics was used to map the metabolomic profiles of OC, odontogenic keratocyst (OKC) and AM. WGCNA and differential analysis identified L-cysteine in OKC and AM. Cystathionine γ-lyase (CTH) was further screened by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The functions of L-cysteine were further validated. Finally, we confirmed that CTH affected destructive activities by regulating the sensitivity of epithelial cells to ferroptosis. CONCLUSION: High-throughput targeted metabolomics performed on diseased tissue confirmed the unique alteration of metabolic profiles in OKC and AM. CTH and its metabolite L-cysteine are the key factors regulating destructive activities.

3.
iScience ; 27(4): 109340, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500829

RESUMO

Lactate is known to play a crucial role in the progression of malignancies. However, its mechanism in regulating the malignant phenotype of head and neck squamous cell carcinoma (HNSCC) remains unclear. This study found that lactate increases cancer stem cell (CSC) characteristics of HNSCC by influencing the deposition of type I collagen (Col I). Lactate promotes Col I deposition through two distinct pathways. One is to convert lactate to pyruvate, a substrate for Col I hydroxylation. The other is the activation of HIF1-α and P4HA1, the latter being a rate-limiting enzyme for Col I synthesis. Inhibition of these two pathways effectively counteracts lactate-induced enhanced cell stemness. Further studies revealed that Col I affects CSC properties by regulating cell cycle dynamics. In conclusion, our research proposes that lactate-driven Col I deposition is essential for the acquisition of CSC properties, and lactate-centric Col I deposition may be an effective target for CSCs.

4.
Cancer Sci ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494608

RESUMO

Lipid metabolic reprogramming of tumor cells has been proven to play a critical role in tumor initiation and development. However, lipid metabolism in cancer-associated fibroblasts (CAFs) has rarely been studied, particularly in CAFs of oral squamous cell carcinoma (OSCC). Additionally, the molecular mechanism by which tumor cells regulate lipid metabolism in fibroblasts is unclear. In this study, we found that phosphorylated ATP citrate lyase (p-ACLY), a key lipid metabolic enzyme, was upregulated in OSCC CAFs. Compared to paracancerous normal fibroblasts, CAFs showed enhanced lipid synthesis, such as elevated cytosolic acetyl-CoA level and accumulation of lipid droplets. Conversely, reduction of p-ACLY level blocked this biological process. In addition, blocking lipid synthesis in CAFs or inhibiting fatty acid uptake by OSCC cells reduced the promotive effects of CAFs on OSCC cell proliferation, invasion, and migration. These findings suggested that CAFs are one of lipid sources required for OSCC progression. Mechanistically, AKT signaling activation was involved in the upregulation of p-ACLY level and lipid synthesis in CAFs. Interleukin-8 (IL8), an exocrine cytokine of OSCC cells, could activate AKT and then phosphorylate ACLY in fibroblasts. This study suggested that the IL8/AKT/p-ACLY axis could be considered as a potential target for OSCC treatment.

5.
Biomedicines ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38397907

RESUMO

Despite obvious tumor shrinkage, relapse after chemotherapy remains a main cause of cancer-related mortality, indicating that a subpopulation of cancer cells acquires chemoresistance and lingers after treatment. However, the mechanism involved in the emergence of chemoresistant cells remains largely unknown. Here, we demonstrate that the degradation of mitochondria via autophagy leads to a dormant state in a subpopulation of cancer cells and confers on them resistance to lethal cisplatin (DDP) exposure. The surviving DDP-resistant cells (hereafter, DRCs) have a lower metabolic rate but a stronger potential malignant potential. In the absence of DDP, these DRCs exhibit an ever-increasing self-renewal ability and heightened tumorigenicity. The combination of chloroquine and DDP exerts potent tumor-suppressive effects. In summary, our findings illuminate the mechanism between mitophagy and tumor dormancy and prove that targeting mitophagy might be a promising approach for overcoming chemoresistance in head and neck squamous cell carcinoma (HNSCC).

6.
J Pineal Res ; 76(2): e12940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38402581

RESUMO

Hyaluronic acid (HA) is a glycosaminoglycan and the main component of the extracellular matrix (ECM), which has been reported to interact with its receptor CD44 to play critical roles in the self-renewal and maintenance of cancer stem cells (CSCs) of multiple malignancies. Melatonin is a neuroendocrine hormone with pleiotropic antitumor properties. However, whether melatonin could regulate HA accumulation in the ECM to modulate the stemness of head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, we found that melatonin suppressed CSC-related markers, such as CD44, of HNSCC cells and decreased the tumor-initiating frequency of CSCs in vivo. In addition, melatonin modulated HA synthesis of HNSCC cells by downregulating the expression of hyaluronan synthase 3 (HAS3). Further study showed that the Fos-like 1 (FOSL1)/HAS3 axis mediated the inhibitory effects of melatonin on HA accumulation and stemness of HNSCC in a receptor-independent manner. Taken together, melatonin modulated HA synthesis through the FOSL1/HAS3 axis to inhibit the stemness of HNSCC cells, which elucidates the effect of melatonin on the ECM and provides a novel perspective on melatonin in HNSCC treatment.


Assuntos
Hialuronan Sintases , Melatonina , Proteínas Proto-Oncogênicas c-fos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Linhagem Celular Tumoral , Hialuronan Sintases/metabolismo , Melatonina/farmacologia , Células-Tronco Neoplásicas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Int J Oral Sci ; 16(1): 17, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403794

RESUMO

A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model, treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-ß1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs) were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (vFAOs). Consistently, treatment with arecoline reduced the expression of CD31 in vFAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.


Assuntos
Fibrose Oral Submucosa , Humanos , Animais , Ratos , Fibrose Oral Submucosa/patologia , Arecolina/efeitos adversos , Arecolina/metabolismo , Mucosa Bucal/patologia , Trombospondina 1/metabolismo , Trombospondina 1/farmacologia , 60489 , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo
8.
Acta Pharm Sin B ; 14(1): 133-154, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239235
9.
Neoplasia ; 47: 100958, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142528

RESUMO

Head and neck cancer ranks as the sixth most prevalent malignancy, constituting 5 % of all cancer cases. Its inconspicuous onset often leads to advanced stage diagnoses, prompting the need for early detection to enhance patient prognosis. Currently, research into early diagnostic markers relies predominantly on genomics, proteomics, transcriptomics, and other methods, which, unfortunately, necessitate tumor tissue homogenization, resulting in the loss of temporal and spatial information. Emerging as a recent addition to the omics toolkit, spatial metabolomics stands out. This method conducts in situ mass spectrometry analyses on fresh tissue specimens while effectively preserving their spatiotemporal information. The utilization of spatial metabolomics in life science research offers distinct advantages. This article comprehensively reviews the progress of spatial metabolomics in head and neck cancer research, encompassing insights into cancer cell metabolic reprogramming. Various mass spectrometry imaging techniques, such as secondary ion mass spectrometry, stroma-assisted laser desorption/ionization, and desorption electrospray ionization, enable in situ metabolite analysis for head and neck cancer. Finally, significant emphasis is placed on the application of presently available techniques for early diagnosis, margin assessment, and prognosis of head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço , Metabolômica , Humanos , Espectrometria de Massas , Metabolômica/métodos , Proteômica , Genômica , Neoplasias de Cabeça e Pescoço/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
Nano Lett ; 23(21): 9963-9971, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37729438

RESUMO

Given the key roles of cancer associated fibroblasts (CAFs) in shaping tumor stroma, this study shows a CAF-associated ITGB1-inactivating peptide-enriched membrane nanodelivery system (designated as PMNPs-D) to simultaneously target CAFs and tumor cells for boosted chemotherapy through promoted drug perfusion. In the structure of PMNPs-D, the PLGA-based inner core is loaded with the chemotherapeutic drug doxorubicin, and the outer surface is cloaked by hybrid biomembranes with the insertion of integrin ß1 (ITGB1) inhibiting peptide (i.e., FNIII14). After prolonged blood circulation and actively targeting in tumor sites, PMNPs-D can respond to CAF-overexpressed fibroblast activation protein-α (FAP-α) to trigger the release of FNIII14, which will bind to ITGB1 and inhibit CAFs' biological function in producing the stromal matrix, thereby loosening the condensed stromal structure and enhancing the permeability of nanotherapeutics in tumors. As a result, this tailor-designed nanosystem shows substantial tumor inhibition and metastasis retardation in aggressive adenoid cystic carcinoma (ACC) tumor-harboring mice.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Animais , Camundongos , Fibroblastos Associados a Câncer/patologia , Neoplasias/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Membranas , Peptídeos/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Fibroblastos/metabolismo
11.
Oncogene ; 42(15): 1166-1180, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823377

RESUMO

Nicotinamide N-methyltransferase (NNMT) has been reported to be linked to methylation reprogramming in cancer cells. However, the role of NNMT in the tumour microenvironment (TME) remains elusive. Here, we found that the expression of NNMT was elevated in the stroma of oral squamous cell carcinoma (OSCC). Using a fibroblast-attached organoids (FAOs) model, we confirmed that stromal NNMT expression contributed to the generation of assembled tumour organoids. In a tumour regeneration assay with co-implanted OSCC cells and cancer-associated fibroblasts (CAFs), the tumour-initiating activity was reduced when NNMT was silenced in CAFs. In contrast, overexpression of NNMT in paracancerous fibroblasts (PFs) accelerated tumour growth in co-inoculation experiments. Notably, fibroblast-specific NNMT can regulate type I collagen deposition in both FAOs and xenografts. Further investigations confirmed that the stromal NNMT-aggravated oncogenic activities were attenuated by treatment with inhibitors of either collagen synthesis (e.g. losartan, tranilast, and halofuginone) in fibroblasts, or the focal adhesion kinase (FAK) signal (i.e. defactinib) in cancer cells. Mechanistically, overexpression of NNMT reduced the enrichment of H3K27me3 at the promoter of the gene encoding lysyl oxidase (LOX), a key enzyme that regulates the cross-linking of collagen I. Overall, we propose that the NNMT-LOX-FAK cascade contributes to the crosstalk between cancer cells and fibroblasts during OSCC development, and that NNMT-centric extracellular matrix remodelling is a novel therapeutic target for patients with OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Fibroblastos/metabolismo , Organoides/patologia , Colágeno , Microambiente Tumoral
12.
Oral Dis ; 29(5): 1967-1978, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35388593

RESUMO

OBJECTIVE: Tumor-stroma ratio (TSR) is a promising parameter representing the abundance of the stroma which has been validated in many solid tumors. However, it is still not clear which part of stroma mainly contribute to the prognostic value of TSR. The aim of this study is to confirm the prognostic value of TSR in a large cohort of oral squamous cell carcinoma (OSCC) and further demonstrated that cancer-associated fibroblasts (CAFs)-stroma ratio (CSR) contributed to the prognostic value of TSR. MATERIALS AND METHODS: TSR was evaluated on hematoxylin and eosin stained tissue samples from 581 patients with OSCC, which divides patients into high (>50%) and low (<50%) stroma. Then, CSR was estimated on immunohistochemical staining slides of 100 patients selected from 581 patients. RESULTS: In multivariate analysis, TSR was identified as an independent prognostic factor for disease-free survival (DFS) (p < 0.001) and oral cancer-specific survival (OCSS) (p < 0.001). The interaction term reached statistical significance for histological grade for DFS and OCSS separately. Furthermore, the high-stroma group had a higher CSR than the low-stroma group. CONCLUSION: The prognostic value of TSR is validated in OSCC particularly in moderate and high differentiation, and CSR plays its part in the prognosis of TSR.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Prognóstico , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Fibroblastos Associados a Câncer/patologia , Células Estromais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/patologia
13.
Oral Dis ; 29(3): 913-922, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34741375

RESUMO

OBJECTIVE: Cancer-associated fibroblasts (CAFs) are abundantly infiltrated in oral squamous cell carcinoma (OSCC), but the contact-dependent mechanisms that regulate CAFs phenotype in precursor cells, such as paracancerous fibroblasts (PFs), remain unclear. Here, a fibroblast-attached organoid (FAO) model was initiated to determine phenotype transition of fibroblasts triggered by contact with OSCC. MATERIAL AND METHODS: Organoids and fibroblasts were generated using OSCC and adjacent tissues. Cell-clusters containing fibroblasts and tumour cells were aggregated to allow for FAOs expansion. Immunoblotting assay was performed to compare expression of Notch intracellular domain (NICD) in CAFs and PFs. Colony formation assay was employed to evaluate morphological activation of fibroblasts. RESULTS: Compared to traditional 3D co-culture, FAOs better modulated the spatial distribution of fibroblasts with tumour nests. The presence of CAFs with multiple branches was stably observed in FAOs during serial passage. Incorporation with organoids promoted the ability of PFs to form multiple branches. Immunoblotting assay confirmed higher NICD level in CAFs than PFs. Treatment with Notch inhibitor, N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (i.e. DAPT) blocked morphological activation of fibroblasts incorporated into FAO. CONCLUSION: We developed a robust strategy to study contact-dependent mechanisms underlying tumour-stromal interaction, and suggested that Notch activity contributes to biogenesis of OSCC-associated fibroblasts.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Fibroblastos , Fenótipo , Organoides/metabolismo , Organoides/patologia , Linhagem Celular Tumoral
14.
Eur Radiol ; 33(6): 4303-4312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36576543

RESUMO

OBJECTIVES: Lymph node (LN) metastasis is a common cause of recurrence in oral cancer; however, the accuracy of distinguishing positive and negative LNs is not ideal. Here, we aimed to develop a deep learning model that can identify, locate, and distinguish LNs in contrast-enhanced CT (CECT) images with a higher accuracy. METHODS: The preoperative CECT images and corresponding postoperative pathological diagnoses of 1466 patients with oral cancer from our hospital were retrospectively collected. In stage I, full-layer images (five common anatomical structures) were labeled; in stage II, negative and positive LNs were separately labeled. The stage I model was innovatively employed for stage II training to improve accuracy with the idea of transfer learning (TL). The Mask R-CNN instance segmentation framework was selected for model construction and training. The accuracy of the model was compared with that of human observers. RESULTS: A total of 5412 images and 5601 images were labeled in stage I and II, respectively. The stage I model achieved an excellent segmentation effect in the test set (AP50-0.7249). The positive LN accuracy of the stage II TL model was similar to that of the radiologist and much higher than that of the surgeons and students (0.7042 vs. 0.7647 (p = 0.243), 0.4216 (p < 0.001), and 0.3629 (p < 0.001)). The clinical accuracy of the model was highest (0.8509 vs. 0.8000, 0.5500, 0.4500, and 0.6658 of the Radiology Department). CONCLUSIONS: The model was constructed using a deep neural network and had high accuracy in LN localization and metastasis discrimination, which could contribute to accurate diagnosis and customized treatment planning. KEY POINTS: • Lymph node metastasis is not well recognized with modern medical imaging tools. • Transfer learning can improve the accuracy of deep learning model prediction. • Deep learning can aid the accurate identification of lymph node metastasis.


Assuntos
Aprendizado Profundo , Neoplasias Bucais , Humanos , Estudos Retrospectivos , Metástase Linfática/diagnóstico por imagem , Neoplasias Bucais/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Linfonodos/diagnóstico por imagem
15.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36497206

RESUMO

Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.

16.
Oral Dis ; 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36403234

RESUMO

OBJECTIVE: This study aimed to explore the trend of oral cancer (OC) disease burden in China from 1990 to 2019 and predict the disease burden in the next 20 years. METHODS: OC data collected for 15 years old in China from 1990 to 2019 were obtained from the 2019 Global Burden of Disease Study. Estimated annual percentage changes (EAPCs), with respective 95% CI, were used to assess incidence, mortality, disability-adjusted life-year (DALY), and their trends. RESULTS: From 1990 to 2019, the age-standardized rate of incidence, mortality, and DALY of OC in China showed an upward trend with EAPCs of 2.33 (95% CI = 2.01-2.63), 1.44 (95% CI = 1.15-1.73), and 1.24 (95% CI = 0.95-1.52), respectively. The main risk factors for OC in China were smoking and alcohol consumption. New cases, deaths, and DALYs due to OC are predicted to increase >1.5 times over the next 20 years. CONCLUSION: The number of cases, deaths, and DALYs will continue to increase in the next 20 years. Therefore, the control of risk factors, such as tobacco and alcohol consumption, needs to be strengthened to reduce the burden of OC in China.

17.
Int J Oral Sci ; 14(1): 36, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35851058

RESUMO

Tumor volume increases continuously in the advanced stage, and aside from the self-renewal of tumor cells, whether the oncogenic transformation of surrounding normal cells is involved in this process is currently unclear. Here, we show that oral squamous cell carcinoma (OSCC)-derived small extracellular vesicles (sEVs) promote the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of normal epithelial cells but delay their apoptosis. In addition, nuclear-cytoplasmic invaginations and multiple nucleoli are observed in sEV-treated normal cells, both of which are typical characteristics of premalignant lesions of OSCC. Mechanistically, miR-let-7c in OSCC-derived sEVs is transferred to normal epithelial cells, leading to the transcriptional inhibition of p53 and inactivation of the p53/PTEN pathway. In summary, we demonstrate that OSCC-derived sEVs promote the precancerous transformation of normal epithelial cells, in which the miR-let-7c/p53/PTEN pathway plays an important role. Our findings reveal that cancer cells can corrupt normal epithelial cells through sEVs, which provides new insight into the progression of OSCC.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , MicroRNAs , Neoplasias Bucais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Regulação para Baixo , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Humanos , MicroRNAs/metabolismo , Neoplasias Bucais/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo
18.
Biomed Res Int ; 2022: 6457840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800221

RESUMO

The burden of oral cancer (OC) is closely related to economic development. We aimed to evaluate the burden of OC at different stages of economic development in China in terms of incidence, mortality, and mortality-to-incidence ratio (MIR) from 1990 to 2019. Data on cancer in China from 1990 to 2019 were obtained from the Global Burden of Disease 2019. Based on human development index (HDI), Chinese economic development was divided into three stages: low, medium, and high HDI stages. Mann-Whitney U-test was used to evaluate the differences in age-standardised incidence rates (ASIR), age-standardised mortality rates (ASMR), and MIR at various stages of HDI. Correlation and regression tests were conducted to examine the association amongst ASIR, ASMR, MIR, and HDI in OC. The estimated annual percentage changes (EAPCs) were calculated to assess the trend of ASIR, ASMR, and MIR. Significant differences were observed in terms of ASIR, ASMR, and MIR between groups (P < 0.001). The values of both sexes in the low HDI stage were lower than those of the medium and high HDI stages, except for MIR, in which the low HDI stage was the highest (P < 0.05). ASIR and ASMR of OC in males at the medium HDI stage showed the fastest growth rate with EAPC values of 5.64 (95% confidence interval, 95% CI, 5.20 to 6.08) and 4.42 (95% CI, 4.01 to 4.82), respectively. A strong positive correlation exists between HDI and ASIR (r = 0.96) and ASMR (r = 0.91) in both sexes from 1990 to 2019. During the high HDI stage, the ASIR and ASMR of OC were at a high level, but the ASIR halted the uptrend trend and ASMR showed a decreasing trend. Therefore, the HDI index has been positively correlated with the ASIR and ASMR of OC in China in the past 30 years, but this relationship may not be sustained as the economy develops. The health department should continue to allocate additional resources for the prevention and treatment of OC.


Assuntos
Neoplasias Bucais , China/epidemiologia , Feminino , Humanos , Incidência , Masculino , Neoplasias Bucais/epidemiologia
19.
J Stomatol Oral Maxillofac Surg ; 123(6): 666-671, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35768022

RESUMO

The vascular iliac myofascial flap is a compound flap with the deep circumflex iliac artery (DCIA) as the vascular pedicle, carrying the iliac bone and parts of the internal oblique, external oblique and muscle-fascial tissue that cover the surface of the iliac crest and inside the iliac bone. The aim of this study was to advocate a feasible surgical strategy for maxillofacial surgeons through our review of clinical applications and to improve the quality of life of patients after the operation. In recent years, Stomatology Hospital of Wuhan University has performed dozens of vascularized iliac myofascial flaps, not only to repair jaw defects but also to complete the repair of intraoral soft tissue defects. 20 patients were followed up. These patients with jaw tumors who received a vascular iliac myofascial flap to repair compound defects of the jaw from 2018 to 2020. The Quality of Life Questionnaire-Head and Neck Cancer-37 (QLQ-H&N37) was used to evaluate their speech function (Z=-0.061, P>0.05) and postoperative aesthetics (Z=-2.824, P<0.05). All patients obtained good surgical results and satisfaction in terms of aesthetics and function. The successful reconstruction of these cases prove that the vascularized iliac composite flap with myofascial tissue is a reliable flap for the reconstruction of maxillofacial defects.


Assuntos
Neoplasias de Cabeça e Pescoço , Procedimentos de Cirurgia Plástica , Humanos , Ílio/cirurgia , Ílio/irrigação sanguínea , Procedimentos de Cirurgia Plástica/métodos , Qualidade de Vida , Retalhos Cirúrgicos/cirurgia
20.
Br J Cancer ; 127(3): 449-461, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35444287

RESUMO

BACKGROUND: Angiogenesis is a key rate-limiting step in the process of tumour progression. Cancer-associated fibroblasts (CAFs), the most abundant component OSCC stroma, play important roles in pro-angiogenesis. Recently, the stroma "reverse Warburg effect" was proposed, and PFKFB3 has been brought to the forefront as a metabolic enzyme regulating glycometabolism. However, it remains unclear whether glycometabolism reprogramming is involved in promoting the angiogenesis of CAFs. METHODS: CAFs and paracancerous fibroblasts (PFs) were isolated from OSCC and adjacent tissues. We detected the pro-angiogenesis and glycometabolism phenotype of three pairs of fibroblasts. Targeted blockage of PFKFB3 or activation of PGC-1α signal was used to investigate the effect of glycolysis on regulating angiogenesis of CAFs in vitro and vivo. RESULTS: CAFs exhibited metabolic reprogramming and enhanced proangiogenic phenotype compared with PFs. Inhibition of PFKFB3-dependent glycolysis impaired proangiogenic factors (VEGF-A, PDGF-C and MMP9) expression in CAFs. Furthermore, CAFs proangiogenic phenotype was regulated by glycometabolism through the PGC-1α/PFKFB3 axis. Consistently, PGC-1α overexpression or PFKFB3 knockdown in CAFs slowed down tumour development by reducing tumour angiogenesis in the xenograft model. CONCLUSION: CAFs of OSCC are characterised with glycometabolic reprogramming and enhanced proangiogenic phenotypes. Our findings suggest that activating PGC-1α signalling impairs proangiogenic phenotype of CAFs by blocking PFKFB3-driven glycolysis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Bucais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfofrutoquinase-2 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Humanos , Neoplasias Bucais/patologia , Neovascularização Patológica/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fenótipo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...